Techtraunauts's Blog

Master Medallion Architecture in Databricks: 5 Proven Steps to Boost Your Data Pipeline (Pros & Cons)

April 8, 2025 | by adarshnigam75@gmail.com

medallian

Introduction

Medallion Architecture in Databricks is a powerful framework for organizing data lakes into Bronze (raw), Silver (cleaned), and Gold (enriched) layers. This approach ensures scalability, reliability, and governance—critical for modern data pipelines. Databricks, with its Delta Lake integration, is a leading platform for implementing this architecture efficiently.

In this guide, we’ll explore:
✅ 5 key steps to implement Medallion Architecture in Databricks.
✅ Pros & cons of this approach.
✅ Cross-technology comparisons (vs. traditional warehousing).
✅ Best practices for optimization.

Let’s dive in!


1. What is Medallion Architecture?

Medallion Architecture is a data design pattern that structures data into three layers:

LayerPurposeExample Use Case
BronzeRaw, unprocessed dataIngestion from Kafka, CDC logs
SilverCleaned, validated dataDeduplication, schema enforcement
GoldBusiness-ready aggregatesReports, ML feature stores

Why use it in Databricks?
✔ Built for Delta Lake (ACID transactions, time travel).
✔ Scalable for batch & streaming (Auto Loader, Structured Streaming).
✔ Unity Catalog integration for governance.

Cross-Tech Reference: Unlike traditional ETL-heavy data warehouses (Snowflake, Redshift), Medallion Architecture in Databricks is schema-on-read, enabling flexibility.


2. Pros & Cons of Medallion Architecture in Databricks

✅ Pros

AdvantageDescription
Data QualityEnforces validation in Silver layer.
Cost EfficiencyOptimized storage (Delta Lake compression).
Streaming SupportWorks seamlessly with real-time pipelines.
GovernanceUnity Catalog provides lineage & access control.

❌ Cons

ChallengeMitigation Strategy
ComplexityRequires careful partitioning & schema design.
Small Files ProblemUse OPTIMIZE + Z-ordering.
Schema DriftEnforce schema evolution policies.

Comparison:

  • Traditional Data Warehouse (Snowflake, BigQuery): Strict schema-on-write, less flexible.
  • Medallion in Databricks: Schema-on-read, better for unstructured data.

3. 5 Key Steps to Implement Medallion Architecture in Databricks

Step 1: Define Bronze, Silver, and Gold Layers

  • Bronze: Store raw data (JSON, Parquet, Avro).pythonCopydf.write.format(“delta”).save(“/mnt/bronze/sales_raw”)
  • Silver: Apply transformations (dedupe, type checks).sqlCopyCREATE TABLE silver.sales AS SELECT DISTINCT * FROM bronze.sales_raw WHERE amount > 0
  • Gold: Aggregate for analytics.pythonCopydf.groupBy(“region”).sum(“revenue”).write.saveAsTable(“gold.sales_by_region”)

Backlink: Databricks Documentation on Delta Lake


Step 2: Set Up Delta Lake for Reliability

  • Enable ACID transactions:sqlCopy
    • SET spark.databricks.delta.properties.defaults.autoOptimize = true;
  • Use Time Travel for audits:sqlCopy
    • SELECT * FROM delta.`/mnt/silver/sales` VERSION AS OF 12

Cross-Tech Reference: Delta Lake vs. Iceberg/Hudi (all support ACID, but Delta integrates best with Databricks).


Step 3: Implement Incremental Processing

AutoLoader for Streaming:

Medallion Architecture in Databricks

    Merge of Upserts:

    Medallion Architecture in Databricks

    Step 4: Apply Data Quality Checks

    Use Databricks DLT (Data Quality Rules):

    @dlt.expect("valid_amount", "amount > 0")
    @dlt.expect_or_drop("valid_customer", "customer_id IS NOT NULL")

    Backlink: Great Expectations for Data Validation


    Step 5: Optimize for Performance & Cost

    OptimizationCommandImpact
    CompactionOPTIMIZE delta./path“Reduces small files
    Z-OrderingOPTIMIZE sales ZORDER BY dateFaster queries
    Photon EngineSET spark.databricks.photon.enabled = true2-5x speedup

    Cross-Tech Reference: Z-ordering in Delta vs. BigQuery Partitioning.


    4. Common Challenges & Solutions

    ChallengeSolution
    Schema DriftUse MERGE SCHEMA in Delta.
    Slow QueriesApply partitioning + caching.
    GovernanceUse Unity Catalog for access control.

    2025 Updates: What’s New in Medallion Architecture & Databricks?

    1. Unity Catalog Deep Integration

    • 2025 Feature: Databricks has deepened Unity Catalog’s role in Medallion Architecture, now offering:
      • Automated data lineage tracking across Bronze, Silver, and Gold layers.
      • Fine-grained access control at the column level (e.g., masking PII in Bronze).
      • AI-powered tagging for compliance (GDPR, CCPA).

    Impact:

    • Easier governance for multi-cloud setups (AWS, Azure, GCP).
    • Reduced manual tagging effort by ~40% (Databricks 2025 benchmark).

    Code Example:

    sql

    Copy

    -- Grant column-level access in Unity Catalog (2025 update)  
    GRANT SELECT (product_id, region) ON TABLE silver.sales TO analysts;

    2. Delta Lake 3.0: Smarter Medallion Layers

    • Key 2025 Upgrades:
      • Dynamic Schema Evolution: Auto-handle schema drift in Bronze without breaking pipelines.
      • Multi-Cluster Writes: Concurrent writes to Bronze/Silver/Gold without locks (2x throughput).
      • Cost-Saving Storage: Delta Lake now integrates with Iceberg format (open-source interoperability).

    Comparison Table (Delta Lake 2.4 vs. 3.0):

    FeatureDelta Lake 2.4Delta Lake 3.0 (2025)
    Schema EvolutionManual MERGE SCHEMAAuto-detection + alerting
    Cross-Layer ConsistencyRequires manual jobsACID transactions across layers
    Iceberg CompatibilityLimitedFull read/write support

    Backlink: Delta Lake 3.0 Release Notes


    3. Generative AI for Medallion Pipeline Optimization

    • 2025 Innovation: Databricks now offers AI-assisted pipeline development:
      • Auto-suggest transformations (e.g., “Detect and remove duplicates in Silver”).
      • Anomaly detection (e.g., flag unexpected spikes in Bronze data volume).
      • Natural Language to SQL: Convert prompts like “Sum revenue by region in Gold” into optimized code.

    Example:
    dlt.ai_expect(“silver.sales”, “auto-validate: amount > 0 AND customer_id NOT NULL”)

    Cross-Tech Reference:

    • Competes with Snowflake Cortex AI but with tighter Delta Lake integration.

    4. Photon Engine 2.0: 3x Faster Gold Layer Queries

    • 2025 Performance Boost:
      • Vectorized GPU acceleration for Gold layer aggregations.
      • Predictive caching (auto-materializes frequent query results).

    Benchmark (2025):

    Query TypePhoton 1.0 (2023)Photon 2.0 (2025)
    GROUP BY aggregation120 sec40 sec (-66%)
    JOIN heavy pipeline300 sec90 sec (-70%)

    Use Case:

    -- Photon 2.0 auto-optimizes this Gold-layer query  
    SELECT region, SUM(revenue) FROM gold.sales GROUP BY 1;

    5. Medallion Architecture + Databricks Lakehouse Apps

    • 2025 Trend: Pre-built Lakehouse Apps for industry-specific Medallion workflows:
      • Retail: Real-time inventory Silver → Gold (with forecasting).
      • Healthcare: HIPAA-compliant Bronze-to-Gold patient data pipelines.

    Example App Stack:

    1. Bronze: Ingests FHIR/HL7 data.
    2. Silver: De-identifies PII using Unity Catalog.
    3. Gold: Populates a GenAI-powered diagnostics dashboard.

    Backlink: Databricks Lakehouse Apps Gallery


    6. Sustainability: Cost & Carbon Footprint Tracking

    • 2025 Feature:
      • Carbon-aware scheduling: Auto-shifts heavy jobs to low-emission cloud regions.
      • Cost attribution per layer: Track spend across Bronze/Silver/Gold in USD and CO₂.

    Dashboard Metric:

    Bronze Layer: $1,200/month | 45 kg CO₂  
    Gold Layer:   $800/month  | 20 kg CO₂  

    Key Takeaways for 2025

    🔹 Unity Catalog is now mandatory for enterprise Medallion deployments.
    🔹 Delta Lake 3.0 + Iceberg = More flexibility, less vendor lock-in.
    🔹 Generative AI reduces pipeline development time by ~30%.
    🔹 Photon 2.0 makes Gold-layer analytics faster than ever.

    Call to Action:
    Upgrading to Databricks’ 2025 stack? Share your use case below!

    RELATED POSTS

    View all

    view all